Free group functors

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Applicative Functors

Applicative functors [6] are a generalisation of monads. Both allow the expression of effectful computations into an otherwise pure language, like Haskell [5]. Applicative functors are to be preferred to monads when the structure of a computation is fixed a priori. That makes it possible to perform certain kinds of static analysis on applicative values. We define a notion of free applicative fu...

متن کامل

Group Functors in Plain English

ion. It is more a descent to the mesosphere. For simplicity of discussion, we shall stick to biset functors, though variants of the material apply also to other kinds of group functors. In our account of biset functors, we mentioned that the abstraction here is rather similar to the abstraction behind the notion of ratios: just as the Greeks moved towards abstract ratios in place of ratios of p...

متن کامل

Ultra-Countable Functors and Descriptive Group Theory

Let Ȳ be a n-dimensional curve. Is it possible to compute topoi? We show that g̃ = 2. It would be interesting to apply the techniques of [20] to covariant topoi. This reduces the results of [20] to an approximation argument.

متن کامل

Covering Functors, Skew Group Categories and Derived Equivalences

Abstract. Let G be a group of automorphisms of a category C. We give a definition for a functor F : C → C to be a G-covering and three constructions of the orbit category C/G, which generalizes the notion of a Galois covering of locally finitedimensional categories with group G whose action on C is free and locally bonded. Here C/G is defined for any category C and does not require that the act...

متن کامل

Reflection Functors for Quiver Varieties and Weyl Group Actions

We define a Weyl group action on quiver varieties using reflection functors, which resemble ones introduced by Bernstein-Gelfand-Ponomarev [1]. As an application, we define Weyl group representations of homology groups of quiver varieties. They are analogues of Slodowy’s construction of Springer representations of the Weyl group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1999

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(98)00015-2